US009092644B2

a2 United States Patent 10) Patent No.: US 9,092,644 B2
Narendra Trivedi et al. (45) Date of Patent: Jul. 28, 2015

(54) METHOD AND SYSTEM FOR PROTECTING (58) Field of Classification Search
MEMORY INFORMATION IN A PLATFORM CPC . GO6F 12/1408; GOGF 21/64; GO6F 12/1425;
HO4L 9/0643

(75) Inventors: Alpa T. Narendra Trivedi, Hillsboro,
OR (US); David M. Durham,
Beaverton, OR (US); Men Long,

See application file for complete search history.

Beaverton, OR (US); Siddhartha (56) References Cited

Chhabra, Hillsboro, OR (US); Uday R. U.S. PATENT DOCUMENTS

Savagaonkar, Portland, OR (US);

Carlos V. Rozas, Portland, OR (US) 2004/0187012 Al* 9/2004 Kohiyamaetal. 713/193
2006/0161773 Al* 7/2006 Okazakietal. ... 713/168

(73) Assignee: Intel Corporation, Santa Clara, CA 2011/0119498 A1~ 52011 Guyot

(Us) 2011/0123020 Al* 52011 Choietal.ccceeeee. 380/28
2011/0154059 Al 6/2011 Durham et al.
2012/0079283 Al* 3/2012 Hashimoto etal. 713/189

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 64 days.

International Preliminary Report on Patentability for PCT Patent

(21) Appl. No.: 13/976,935 Application No. PCT/US201 /067586 mailed Jul. 10, 2014, 6 pages.
. International Search Report and Written Opinion for PCT Patent
(22) PCT Filed: Dec. 28,2011 Application No. PCT/US2011/067586 Mailed Sep. 7, 2012, 9 pages.
(86) PCT No.: PCT/US2011/067586 * cited by examiner
§ 371 (0)(1),
(2), (4) Date: Jun. 27, 2013 Primary Examiner — Gilberto Barron, Jr.
Assistant Examiner — Arya Golriz
(87) PCT Pub. No.: ' WO2013/100964 (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
PCT Pub. Date: Jul. 4, 2013
57 ABSTRACT
(65) Prior Publication Data A method and system to provide an effective, scalable and yet
US 2014/0208109 A1 Tul. 24,2014 low-cost solution for Confidentiality, Integrity and Replay
protection for sensitive information stored in a memory and
(51) Int.ClL prevent an attacker from observing and/or modifying the state
GO6F 21/64 (2013.01) of the system. In one embodiment of the invention, the system
HO4L 9/06 (2006.01) has strong hardware protection for its memory contents via
GO6F 12/14 (2006.01) XTS-tweak mode of encryption where the tweak is derived
GO6F 21/78 (2013.01) based on “Global and Local Counters”. This scheme offers to
GOGF 21/79 (2013.01) enable die-area efficient Replay protection for any sized
(52) US.CL memory by allowing multiple counter levels and facilitates
CPC GO6F 21/64 (2013.01); GOGF 12/1408 using small counter-sizes to derive the “tweak” used in the

(2013.01); GO6F 21/78 (2013.01); GO6F 21/79 XTS encryption without sacrificing cryptographic strength.
(2013.01); HO4L 9/0643 (2013.01); HO4L
2209/12 (2013.01) 27 Claims, 3 Drawing Sheets

110
Global counter

P - 160

- >~ > Ondie
120 122 124 126 128 130 . o o 132 memary
LCg LC4 LCz LCa LC4 LCs LCaps
I [
____________________ [S
148 149
1,;'0 1,\;' 1 1’\:2 1,\:3 . o . :\:4 Encrypted Encrypted
i B il i '8 MAC line MAC line
4—=64byles—Pp 4—64 bytes—P»
< 2 byt L 162
> 150 Encrypted data line - External
memory
> 152 Encrypted data line
154 Encrypted data line

— 156 Encrypted data line

U.S. Patent Jul. 28, 2015 Sheet 1 of 3 US 9,092,644 B2
110)
Global counter
- ~ 160
l >~ ¢+ On-die
120 122 124 126 128 130 o o o 132 memory
LCo LC4 LC, LCs LC, LCs LCaogs
[[
________________ - —
148 149
10| tat| 142)143) 1144 | eney || Encrypted
o B sl 19 MAC line MAC line
«4——b64 bytes—Pp €—64 bytes—Pp
: 64 by‘te.. ; 162
— N\ —p 150 Encrypted data line > External
memory
— N> 152 Encrypted data line
——> 154 Encrypted data line
156 Encrypted data line
o
100 FIG. 1
530 510 Processor
Memory
512
532 514 Proc. core
Volatile mem. | < ., 516
534 Cache Mem.
Non-volatile mem. 517
P-P
520 Chipset | 222
540 526 P-P
GPU/ P 524
Display VF VF
P : £~ >
572 574
Bus Bridge I/O devices 560
< p £ >
!
580 582 584 586
Non-volatile mem. Storage device Keyboard/Mouse Network interface

500

FIG. 5

U.S. Patent

Jul. 28, 2015 Sheet 2 of 3

Start

u

US 9,092,644 B2

210
For every write operation to address Aj, check
its MAC value M;and counter LC;

4

Yes 215

v

Addr (LC)) <

220

Set cntr_sel =1

v

Cntr_index?

Set

225
cntr_sel=0

K

230
Decrypt MAC line using

Tweak = {addr || LC; || (GC + cntrl_sel) } to get correct M;

v

240
Write new data and update new MAC value
into the MAC line

Yes 250

Write operations

4

260

cntr_index ++

Reset LC contents
pointed by the cntr_index,
set cntr_index =

completed?

{

Set

265
LC; = LG ++

A
270
Generate a new unique
Tweak = {addr || LC; || (GC + cntrl_sel) }

A
275
Re-encrypt associated MAC line and data line

using XTS mode encryption

200

(Write cycle complete)
FIG. 2

U.S. Patent Jul. 28, 2015 Sheet 3 of 3 US 9,092,644 B2

310
Monitor on every clock cycle if all the counters
have been refreshed once

Yes /31& No
v Cntr_index =

320 40967
Increment GC by 1

Set cntr_index =0
I

Exit
300 FIG. 3

410
For every read operation to address A, extract its MAC value
present in MAC line encrypted using local counter LC;

Yes /41\ No
Addr (LGC;) <

Y Cntr_index? Y
420 425
Setcntr_sel =1 Setcentr_sel =0
I I I
430
Decrypt associated MAC line to get MAC
value assoicated with data line
Yes %N No
Authenticate
. 2 . v
data line?
445 450
Data line contents

Exception detected

read from memory
[|

L 2
(Read cycle complete)
400 FIG. 4

US 9,092,644 B2

1
METHOD AND SYSTEM FOR PROTECTING
MEMORY INFORMATION IN A PLATFORM

CLAIM OF PRIORITY

This application is a U.S. National Phase application under
35 US.C. §371 of International Application No. PCT/
US2011/067586, filed Dec. 28, 2011, entitled “METHOD
AND SYSTEM FOR PROTECTING MEMORY INFOR-
MATION IN A PLATFORM,” the entire contents of which
are incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates to a platform, and more specifically
but not exclusively, to a method and system for protecting
memory information in a platform.

BACKGROUND DESCRIPTION

Merkle trees are often used for memory authentication. A
Merkle tree is a tree of Message Authentication Codes
(MACs) that is computed over the replay-protected memory.
The root of the Merkle tree is stored securely in an on-chip
register in the processor. When a memory data line is
accessed, its integrity is verified by checking its chain of
MAC: to the root of the Merkle tree. This approach, however,
can result in significant performance and storage overheads
due to the large number of MACs that need to be potentially
fetched to verify the integrity of the memory data line.

To optimize the process, the MAC values can be cached in
the Last Level Cache (LLC) and the verification stops on
finding the first MAC along the tree in the LL.C. While this
approach reduces the performance overheads by reducing the
number of MACs that need to fetched and computed to verify
the memory data line, it disturbs the contents of the LL.C.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of embodiments of the inven-
tion will become apparent from the following detailed
description of the subject matter in which:

FIG.11llustrates a block diagram of the memory protection
logic in accordance with one embodiment of the invention;

FIG. 2 illustrates a write operation in accordance with one
embodiment of the invention;

FIG. 3 illustrates an operation to update the global counter
in accordance with one embodiment of the invention;

FIG. 4 illustrates a read operation in accordance with one
embodiment of the invention; and

FIG. 5 illustrates a system to implement the methods dis-
closed herein in accordance with one embodiment of the
invention.

DETAILED DESCRIPTION

Embodiments of the invention described herein are illus-
trated by way of example and not by way of limitation in the
accompanying figures. For simplicity and clarity of illustra-
tion, elements illustrated in the figures are not necessarily
drawn to scale. For example, the dimensions of some ele-
ments may be exaggerated relative to other elements for clar-
ity. Further, where considered appropriate, reference numer-
als have been repeated among the figures to indicate
corresponding or analogous elements. Reference in the speci-
fication to “one embodiment” or “an embodiment” of the
invention means that a particular feature, structure, or char-

20

30

40

45

50

55

2

acteristic described in connection with the embodiment is
included in at least one embodiment of the invention. Thus,
the appearances of the phrase “in one embodiment™ in various
places throughout the specification are not necessarily all
referring to the same embodiment.

Embodiments of the invention provide a method and sys-
tem for protecting memory information in a platform or sys-
tem. For clarity of illustration, unencrypted sensitive data is
referred to as plain text and encrypted data is referred to as
cipher text in one embodiment of the invention. The protec-
tion of the memory information includes, but is not limited to,
confidentiality protection, forgery protection and replay pro-
tection.

In one embodiment of the invention, Confidentiality Pro-
tection (CP) prevents an attacker in recovering plaintext from
cipher text. The retention time of a main memory module
such as a dynamic random access memory (DRAM) is impor-
tant to guarantee that there is no loss of data for security
concerns as the DRAM may retain significant sensitive data
that should be kept undisclosed. For example, a cold boot
attack is a potential attack where an attacker with physical
access to the system can exploit the DRAM retention time to
recover sensitive data off the main memory.

In another example, the cryptographic key used to encrypt
hard the drive may reside in the DRAM. Since the DRAM
contents get erased progressively, the contents are accessible
for a short period after power down. The access time of the
DRAM contents can be further increased from a few seconds
to minutes by cooling the DRAM chip. This enables the
attackers to successfully read the disk encryption keys off the
DRAM by moving the cooled DRAM chip from one com-
puter to another, thereby breaking the hard drive encryption.

In one embodiment of the invention, Forgery Protection
(FP) prevents an attacker from causing any hidden modifica-
tions to the cipher text. For example, data may be modified
either accidently through hardware or transmission errors or
in a deliberate malicious purpose. In either case, the conse-
quences may be quite unpredictable. For example, it can
cause execution-flow corruption to leak cryptographic secrets
stored in the DRAM.

In one embodiment of the invention, Replay Protection
(RP) eliminates any undetected temporal substitution of the
cipher text. Web applications for instance can be easily
exploited using Replay attacks to cause malicious results. For
example, when a user is performing a financial transaction
using a web application to verify his login credentials such as
username and password, a hacker can capture the packets and
replay these packets in the network traffic over a period of
time and get access to the user’s financial accounts. The
hacker could also change the sequence of previous packets to
modify program behavior causing undesirable consequences.

Embodiments of the invention provide an effective, scal-
able and yet low-cost solution for Confidentiality, Integrity
and Replay protection for sensitive information stored in a
memory and prevent an attacker from observing and/or modi-
fying the state of the system. In one embodiment of the
invention, the system has strong hardware protection for its
memory contents via encryption and authentication tech-
niques that are designed specifically to obtain higher perfor-
mance metrics by ensuring that the normal processor or Cen-
tral Processing Unit (CPU) execution flow is unaltered by the
deployed cryptographic techniques. By doing so, it reduces
the cost by saving die area without sacrificing cryptographic
strength.

In one embodiment of the invention, the security sensitive
data or memory contents of the platform are encrypted using
an appropriate Encryption/Decryption algorithm. In one

US 9,092,644 B2

3

embodiment of the invention, the encryption engine is placed
between the LL.C and the external memory of the platform.

Whenever data is evicted off the processor chip or module
in the platform, the data is encrypted and stored in the main
memory of the platform in one embodiment of the invention.
By doing so, it eliminates the possibility of an attacker
observing plaintext data outside the boundary of the proces-
sor chip in one embodiment of the invention. The encryption/
decryption algorithm includes, but is not limited to, an XEX
[exclusive OR (XOR) followed by encryption followed by
XOR] based tweaked mode with Cipher Text Stealing (XTS)
mode of encryption to encrypt the Data-lines and Liskov,
Rivest, and Wagner (LRW) Advanced Encryption Scheme
(AES) (LRW-AES).

XTS-AES is a tweakable block cipher that acts on data
units of 128 bits or more and uses the AES block cipher as a
subroutine. The key for XTS-AES consists of a data encryp-
tion key (used by the AES block cipher) as well as a “tweak
key” that is used to incorporate the logical position of the data
block into the encryption. In one embodiment of the inven-
tion, the unique tweak key is derived based on counters and it
shall be explained later.

The memory encryption ensures that the confidentiality of
the data is retained. In one embodiment of the invention,
replay protection is provided by encrypting the sensitive
memory contents and authenticating them by creating a hash
or Message Authentication Code MAC (MAC). Each MAC is
associated with an encrypted data line in one embodiment of
the invention.

In one embodiment of the invention, the system has strong
hardware protection for its memory contents via XTS-tweak
mode of encryption where the tweak is derived based on
“Global and Local Counters”. This scheme offers to enable
die-area efficient Replay protection for any sized memory by
allowing multiple counter levels and facilitates using small
counter-sizes to derive the “tweak” used in the XTS encryp-
tion without sacrificing cryptographic strength. In one
embodiment of the invention, the counter tree can be multi-
level, and when it is multilevel, the intermediate levels do not
need MACs. Only the last level in the tree would need to have
MAC values to determine the integrity of the encrypted data
lines. In this scheme, if any of the counters are disturbed
and/or the data line itself is disturbed, that last level MAC will
not compute correctly.

For a prior Merkel tree, it requires full sized MACs that
ensure no overflow can happen. In one embodiment of the
invention, by trading MACs for counters, smaller sized
counter values can be utilized and these counters are
refreshed before they repeat any values. This removes the
possibility of replaying a previous data line and since only
data writes will increment the counter values, reads from
memory will not cause any refreshing of the tree.

FIG. 1 illustrates a block diagram 100 of the memory
protection logic in accordance with one embodiment of the
invention. For clarity of illustration, a cache memory line that
stores data is referred to as a data line and a cache memory line
that stores MACs is referred to as MAC line. In the block
diagram 100, the data is assumed to be stored in a cache
memory with a line width of 64 bytes when the data is evicted
from the processing unit to the external memory 162. The
block diagram 100 illustrates the global counter 110 and the
Local Counters (LCs) that are stored in the on-die memory
160 and the encrypted MAC cache memory lines and
encrypted data lines that are stored in the external memory
162.

In one embodiment of the invention, the contents of the
cache memory data lines are encrypted using an appropriate

10

15

20

25

30

35

40

45

50

55

60

65

4

encryption algorithm and is authenticated by generating a
MAC with a MAC length of m. The generated MACs are
coalesced or concatenated into a cache memory line of size L.
m can be any suitable integer value in one embodiment of the
invention.

For example, in FIG. 1, the MAC length m is illustrated as
4 bytes and 16 MACs are put together into a single cache
memory line of size 64 bytes (L is illustrated as 64 bytes).
Each MAC is associated with an encrypted data line in one
embodiment of the invention.

For example, MAC, (M,)) 140, M, 141, M, 142, M, 143
and M, 5 144 illustrate 16 encrypted MACs that are coalesced
into a single MAC line of 64 bytes. In FIG. 1, the block
diagram 100 illustrates 4096 (4k) local counters that are
shownasL.C,120,L.C, 122,1.C,124,1.C;126,1.C,128,1.C;
130, and L.C, 45 132. Each of the MACs in the MAC lines is
used for authenticating the encrypted data line. For example,
M, 140, M, 141, M, 142, and M; 143 are used for authenti-
cating the encrypted data lines 150, 152, 154, and 156 respec-
tively.

For each MAC and data line, it is encrypted using the local
counters. For example, in one embodiment of the invention,
each MAC is encrypted using XEX based tweaked mode with
XTS mode of encryption. The tweak used in the encryption is
derived based on the memory address and the local counters
which are incremented only for data write operations in one
embodiment of the invention. By storing the local counters
and the global counter 110 in the on die memory 160, it
prevents an attacker from gaining access to the information
stored in the memory in one embodiment of the invention.

Each LC is assumed to have 16 bits in FIG. 1. In the current
illustration, each LC rolls over after 2! write cycles, assum-
ing that each L.C is incremented by 1 only for a data write
operation in one embodiment of the invention. At each roll
over, the LC arereset or all set to their default count value. The
data read operation is comparatively simplified for higher
performance in one embodiment of the invention.

In one embodiment of the invention, every time a LC value
changes, a unique tweak is generated and the corresponding
MAC line is encrypted adhering to the XTS encryption pro-
tocol. To ensure that the tweak used for encryption is always
unique, the global counter 110 is added in the on-die memory
160 in one embodiment of the invention. When all the 4k LCs
have been refreshed or set all to zeros, the global counter is
incremented by 1 in one embodiment of the invention. By
ensuring that the tweak generated for each data write opera-
tion is unique, the probability of having a collision in a single
power-on CPU life-cycle becomes void.

In one embodiment of the invention, each of the LCs are
refreshed using a round robin manner or in a serial sequence.
In another embodiment of the invention, each of the LCs are
refreshed based on the usage frequency of the data line. For
example, the LC associated with the most written data line is
given priority for refresh in one embodiment of the invention.

FIG. 2 illustrates a write operation 200 in accordance with
one embodiment of the invention. For clarity of illustration,
FIG. 2 is discussed with reference to FIG. 1. In step 210, for
every write operation to address A,, the associated MAC value
M, and associated counter L.C, is determined. In step 215, it
checks whether the address of the associated counter L.C, is
less than the counter index (cntr_index).

In one embodiment of the invention, the cntr_index indi-
cates the current local counter that needs to be refreshed upon
completion of an update interval. For example, for the local
counters illustrated in FIG. 1, the cntr_index has 12 bits to
indicate which one of the 4096 local counters that need to be
refreshed upon completion of an update interval.

US 9,092,644 B2

5

InFIG. 1, itis assumed that there are 4K Local counters and
each counter has a size of 16 bits. Assuming that each LC is
incremented only for a write operation, the update interval is
determined by 2¢¢7'#=16 write cycles. In one embodiment
of the invention, the L.C contents are refreshed periodically
with the update interval as the period and in a round-robin
manner.

If'the address of the associated counter L.C, is less than the
cntr_index, the counter select (cntr_sel) is set to 1 in step 220.
In one embodiment of the invention, the counter select indi-
cates which data lines use the updated or older Global counter
value as a part of the tweak used in encryption. If the address
of the associated counter L.C, is greater than the cntr_index,
the counter select (cntr_sel) is set to 0 in step 220.

In step 230, the MAC line is decrypted using a tweak to get
the correct MAC value M,. In one embodiment of the inven-
tion, the tweak is determined from: Tweak={addr|[LC,||(GC+
cntrl_sel)}. The tweak is generated by concatenating the
Address A,, the LC,, and the sum of the global counter value
with the cntrl_sel in one embodiment of the invention.

In step 240, the new data for the write operation is written
and the correct MAC value obtained from step 230 is updated
in the MAC line. In step 250, it checks whether 16 write
operations are completed. If yes, the contents of the L.C
pointed to by the cntr_index is resetted and the cntr_index is
incremented by one in step 260. If no, the L.C, is incremented
by one in step 265.

In step 270, a new unique tweak is generated using the
formula: Tweak={addr||LC,||(GC+cntrl_sel)}. Instep 275, the
associated MAC line and data line are re-encrypted using the
XTS mode encryption based on the new unique tweak and the
write cycle is completed.

The write operation 200 allows small counter values to be
used and it keeps on-die area overheads to a minimum while
dealing with counter rollover to avoid altering a program
execution flow in one embodiment of the invention.

FIG. 3 illustrates an operation 300 to update the global
counters in accordance with one embodiment of the inven-
tion. For clarity of illustration, FIG. 3 is discussed with ref-
erence to FIG. 1. In step 310, it monitors on every clock cycle
if all the local counters have been refreshed once. In step 315,
it checks ifthe cntr_index has reached 4096. If yes, the global
counter 110 is incremented by one and the cntr_index is set to
zero or reset and the flow ends. If no, the flow ends.

FIG. 4 illustrates a read operation 400 in accordance with
one embodiment of the invention. For clarity of illustration,
FIG. 4 is discussed with reference to FIG. 1. In step 410, for
every read operation to address A, the MAC value is
extracted from its associated MAC line using the associated
local counter L.C,. In step 415, it checks whether the address
of the associated counter L.C, is less than the cntr_index.

If'the address of the associated counter L.C, is less than the
cntr_index, the counter select (cntr_sel) is set to 1 in step 420.
If'the address of the associated counter LC, is greater than the
cntr_index, the counter select (cntr_sel) is set to O in step 425.

In step 430, the associated MAC line is decrypted using a
tweak to get the MAC value associated with the data line. In
step 440, it checks whether the data line is authenticated
successfully using the MAC value obtained in step 430. Ifyes,
the contents of the data line are read from the memory and the
read cycleends. Ifno, an exceptionis generated to indicate the
unsuccessful authentication of the data line and the read cycle
ends.

The write and read operations illustrated do not disturb the
LLC contents and require, at the maximum, one MAC to be
fetched and computed to verify the integrity of a line. Com-
pared to the n MACs that might need to be fetched for a prior

10

15

20

25

30

35

40

45

50

55

60

65

6

art Merkle tree approach, embodiments of the invention pro-
vide a more efficient way that does not alter a program execu-
tion flow.

In another embodiment of the invention, the counters illus-
trated in FIG. 1 can be extended to a N-level tree to allow
coverage for more memory. For example, each individual LC
(local counter) on the die can reference a cache line of
counters in memory (L.,C,), and each of these counters can
reference another line of counters (L,C,) and so on until the
last set of counters is reached (L,C,), where each these
counters is associated with a cache line of MACs at the
bottom leafs of the tree (as illustrated by the encrypted MAC
line in FIG. 1).

The tweak for the N-level tree is changed to:

Tweak={addt|LC||L,C{| . . . |[LyC{|(GC+entrl__sel)}).

One of ordinary skill in the relevant will readily appreciate
the workings of the N-level tree based on the FIGS. 1 to 4 and
shall not be described herein.

FIG. 5 illustrates a system or platform 500 to implement
the methods disclosed herein in accordance with one embodi-
ment of the invention. The system 500 includes, but is not
limited to, a desktop computer, a tablet computer, a laptop
computer, a netbook, a notebook computer, a personal digital
assistant (PDA), a server, a workstation, a cellular telephone,
a mobile computing device, a smart phone, an Internet appli-
ance or any other type of computing device. In another
embodiment, the system 500 used to implement the methods
disclosed herein may be a system on a chip (SOC) system.

The processor 510 has a processing core 512 to execute
instructions of the system 500. The processing core 512
includes, but is not limited to, pre-fetch logic to fetch instruc-
tions, decode logic to decode the instructions, execution logic
to execute instructions and the like. The processor 510 has a
cache memory 516 to cache instructions and/or data of the
system 500. In another embodiment of the invention, the
cache memory 516 includes, but is not limited to, level one,
level two and level three, cache memory or any other configu-
ration of the cache memory within the processor 510.

The memory control hub (MCH) 514 performs functions
that enable the processor 510 to access and communicate with
a memory 530 that includes a volatile memory 532 and/or a
non-volatile memory 534. The volatile memory 532 includes,
but is not limited to, Synchronous Dynamic Random Access
Memory (SDRAM), Dynamic Random Access Memory
(DRAM), RAMBUS Dynamic Random Access Memory
(RDRAM), and/or any other type of random access memory
device. The non-volatile memory 534 includes, but is not
limited to, NAND flash memory, phase change memory
(PCM), read only memory (ROM), electrically erasable pro-
grammable read only memory (EEPROM), or any other type
of' non-volatile memory device.

The memory 530 stores information and instructions to be
executed by the processor 510. The memory 530 may also
stores temporary variables or other intermediate information
while the processor 510 is executing instructions. The chipset
520 connects with the processor 510 via Point-to-Point (PtP)
interfaces 417 and 522. The chipset 520 enables the processor
510 to connect to other modules in the system 500. In another
embodiment of the invention, the chipset 520 is a platform
controller hub (PCH). In one embodiment of the invention,
the interfaces 517 and 522 operate in accordance with a PtP
communication protocol such as the Intel® QuickPath Inter-
connect (QPI) or the like. The chipset 520 connects to a GPU
or a display device 540 that includes, but is not limited to,
liquid crystal display (LLCD), cathode ray tube (CRT) display,
orany other form of visual display device. In another embodi-

US 9,092,644 B2

7

ment of the invention, the GPU 540 is not connected to the
chipset 520 and is part of the processor 510 (not shown).

In addition, the chipset 520 connects to one or more buses
550 and 560 that interconnect the various modules 574, 580,
582, 584, and 586. Buses 550 and 560 may be interconnected
together via a bus bridge 572 if there is a mismatch in bus
speed or communication protocol. The chipset 520 couples
with, but is not limited to, a non-volatile memory 580, a mass
storage device(s) 582, a keyboard/mouse 584 and a network
interface 586. The mass storage device 582 includes, but is
not limited to, a solid state drive, a hard disk drive, an univer-
sal serial bus flash memory drive, or any other form of com-
puter data storage medium. The network interface 586 is
implemented using any type of well known network interface
standard including, but not limited to, an Ethernet interface, a
universal serial bus (USB) interface, a Peripheral Component
Interconnect (PCI) Express interface, a wireless interface
and/or any other suitable type of interface. The wireless inter-
face operates in accordance with, but is not limited to, the
IEEE 802.11 standard and its related family, Home Plug AV
(HPAV), Ultra Wide Band (UWB), Bluetooth, WiMax, or any
form of wireless communication protocol.

While the modules shown in FIG. 5 are depicted as separate
blocks within the system 500, the functions performed by
some of these blocks may be integrated within a single semi-
conductor circuit or may be implemented using two or more
separate integrated circuits. The system 500 may include
more than one processor/processing core in another embodi-
ment of the invention.

The methods disclosed herein can be implemented in hard-
ware, software, firmware, or any other combination thereof.
Although examples of the embodiments of the disclosed sub-
ject matter are described, one of ordinary skill in the relevant
art will readily appreciate that many other methods of imple-
menting the disclosed subject matter may alternatively be
used. In the preceding description, various aspects of the
disclosed subject matter have been described. For purposes of
explanation, specific numbers, systems and configurations
were set forth in order to provide a thorough understanding of
the subject matter. However, itis apparent to one skilled in the
relevant art having the benefit of this disclosure that the sub-
ject matter may be practiced without the specific details. In
other instances, well-known features, components, or mod-
ules were omitted, simplified, combined, or split in order not
to obscure the disclosed subject matter.

The term “is operable” used herein means that the device,
system, protocol etc, is able to operate or is adapted to operate
for its desired functionality when the device or system is in
off-powered state. Various embodiments of the disclosed sub-
ject matter may be implemented in hardware, firmware, soft-
ware, or combination thereof, and may be described by ref-
erence to or in conjunction with program code, such as
instructions, functions, procedures, data structures, logic,
application programs, design representations or formats for
simulation, emulation, and fabrication of a design, which
when accessed by a machine results in the machine perform-
ing tasks, defining abstract data types or low-level hardware
contexts, or producing a result.

The techniques shown in the figures can be implemented
using code and data stored and executed on one or more
computing devices such as general purpose computers or
computing devices. Such computing devices store and com-
municate (internally and with other computing devices over a
network) code and data using machine-readable media, such
as machine readable storage media (e.g., magnetic disks;
optical disks; random access memory; read only memory;
flash memory devices; phase-change memory) and machine

20

30

35

40

45

50

55

8

readable communication media (e.g., electrical, optical,
acoustical or other form of propagated signals—such as car-
rier waves, infrared signals, digital signals, etc.).

While the disclosed subject matter has been described with
reference to illustrative embodiments, this description is not
intended to be construed in a limiting sense. Various modifi-
cations of the illustrative embodiments, as well as other
embodiments of the subject matter, which are apparent to
persons skilled in the art to which the disclosed subject matter
pertains are deemed to lie within the scope of the disclosed
subject matter.

What is claimed is:

1. A processor comprising:

a global counter;

a multilevel counter tree comprising a plurality of local
counters, wherein a last level of the multilevel counter
tree is associated with a plurality of Message Authenti-
cation Code (MAC) lines; and

logic to perform a write operation to a memory address,
wherein the logic is to decrypt one of the MAC lines
associated with the memory address using a tweak based
on one or more of the memory address, the global
counter, a local counter associated with the one MAC
line, and a counter indication bit to obtain a MAC value.

2. The processor of claim 1, wherein the logic to perform

the write operation to the memory address is further to:
determine whether an address of the local counter associ-
ated with the one MAC line is greater than a counter
index;

assert the counter indication bit in response to a determi-
nation that the address of the local counter associated
with the one MAC line is lesser than the counter index;
and

de-assert the counter indication bit in response to a deter-
mination that the address of the local counter associated
with the one MAC line is greater than the counter index.

3. The processor of claim 2, wherein the logic to perform

the write operation to the memory address is further to:
write data to the memory address; and

update the one MAC line associated with the memory
address with the MAC value.

4. The processor of claim 3, wherein the logic to perform

the write operation to the memory address is further to:
determine whether an update interval has been reached;
if so,
reset one of the plurality of local counters associated
with the current counter; and
increment the counter index by one; and
if not so,
increment the local counter associated with the one
MAC line by one.
5. The processor of claim 4, wherein the logic to perform
the write operation to the memory address is further to:
determine another tweak based on one or more of the
memory address, the global counter, the local counter
associated with the one MAC line, and the counter indi-
cation bit; and

encrypt the one MAC line associated with the memory
address using the other tweak.

6. The processor of claim 1, wherein the logic is further to:

determine whether a counter index is set to its maximum
value; and

in response to a determination that the counter index is set
to its maximum value, increment the global counter by
one; and

set the counter index to zero.

US 9,092,644 B2

9

7. The processor of claim 1, wherein the logic is further to
perform a read operation to the memory address, wherein the
logic is to decrypt the one MAC line associated with the
memory address using the tweak to obtain the MAC value.

8. The processor of claim 7, wherein the logic to perform
the read operation to the memory address is further to:

determine whether an address of the local counter associ-

ated with the one MAC line is greater than a counter
index;

assert the counter indication bit in response to a determi-

nation that the address of the local counter associated

with the one MAC line is lesser than the counter index;
and

de-assert the counter indication bit in response to a deter-

mination that the address of the local counter associated

with the one MAC line is greater than the counter index.

9. The processor of claim 8, wherein the logic to perform
the read operation to the memory address is further to:

authenticate a data line associated with the memory

address using the MAC value; and

read contents of the data line in response to a successful

authentication of the data line associated with the

memory address using the MAC value.

10. A system comprising:

a memory; and

aprocessor coupled with the memory, the processing com-

prising:

a global counter;

a multilevel counter tree comprising a plurality of local
counters, wherein a last level of the multilevel counter
tree is associated with a plurality of Message Authen-
tication Code (MAC) lines; and

logic to perform a write operation to a memory address,
wherein the logic is to decrypt one of the MAC lines
associated with the memory address using a tweak
based on one or more of the memory address, the
global counter, the local counter associated with the
one MAC line, and a counter indication bit to obtain a
MAC value.

11. The system of claim 10, wherein the logic to perform
the write operation to the memory address is further to:

determine whether an address of the local counter associ-

ated with the one MAC line is greater than a counter
index;

assert the counter indication bit in response to a determi-

nation that the address of the local counter associated

with the one MAC line is lesser than the counter index;
and

de-assert the counter indication bit in response to a deter-

mination that the address of the local counter associated

with the one MAC line is greater than the counter index.

12. The system of claim 11, wherein the logic to perform
the write operation to the memory address is further to:

write data to the memory address; and

update the one MAC line associated with the memory

address with the MAC value.

13. The system of claim 12, wherein the logic to perform
the write operation to the memory address is further to:

determine whether an update interval has been reached;

if so,

reset one of the plurality of local counters associated
with the current counter; and

increment the counter index by one; and

if not so,

increment the local counter associated with the one
MAC line by one.

10

14. The system of claim 13, wherein the logic to perform
the write operation to the memory address is further to:
determine another tweak based on one or more of the
memory address, the global counter, the local counter
5 associated with the one MAC line, and the counter indi-
cation bit; and
encrypt the one MAC line associated with the memory
address using the other tweak.
15. The system of claim 10, wherein the logic is further to:

19 determine whether a counter index is set to its maximum
value; and
in response to a determination that the counter index is set
to its maximum value, increment the global counter by
15 one; and

set the counter index to zero.

16. The system of claim 10, wherein the logic is further to
perform a read operation to the memory address, wherein the
logic is to decrypt the one MAC line associated with the

20 memory address using the tweak to obtain the MAC value.
17. The system of claim 16, wherein the logic to perform
the read operation to the memory address is further to:
determine whether an address of the local counter associ-
ated with the one MAC line is greater than a counter
index;
assert the counter indication bit in response to a determi-
nation that the address of the local counter associated
with the one MAC line is lesser than the counter index;
and
de-assert the counter indication bit in response to a deter-
mination that the address of the local counter associated
with the one MAC line is greater than the counter index.
18. The system of claim 16, wherein the logic to perform
the read operation to the memory address is further to:
authenticate a data line associated with the memory
address using the MAC value; and
read contents of the data line in response to a successful
authentication of the data line associated with the
memory address using the MAC value.
19. A method comprising:
performing a write operation to amemory address, wherein
performing the write operation comprises decrypting
one of a plurality of the Message Authentication Code
(MAC) lines associated with the memory address using
a tweak based on one or more of the memory address, a
global counter, a local counter associated with the one
MAC line, and a counter indication bit to obtain a MAC
value, wherein the one of the plurality of MAC lines is
associated with a last level of a multilevel counter tree.
20. The method of claim 19, wherein performing the write
operation comprises:
determining whether an address of the local counter asso-
ciated with the one MAC line is greater than a counter
index;
asserting the counter indication bit in response to a deter-
mination that the address of the local counter associated
with the one MAC line is lesser than the counter index;
and
de-asserting the counter indication bit in response to a
determination that the address of the local counter asso-
ciated with the one MAC line is greater than the counter
index.
21. The method of claim 20, wherein performing the write
operation comprises:
writing data to the memory address; and
updating the one MAC line associated with the memory
address with the MAC value.

30

35

40

45

50

o
o

US 9,092,644 B2

11

22. The method of claim 21, wherein performing the write
operation comprises:
determining whether an update interval has been reached;
if so,
resetting one of the plurality of local counters associated
with the current counter; and
incrementing the counter index by one; and
if not so,
incrementing the local counter associated with the one
MAC line by one.
23. The method of claim 19, wherein performing the write
operation comprises:
determining another tweak based on one or more of the
memory address, the global counter, the local counter
associated with the one MAC line, and the counter indi-
cation bit; and
encrypting the one MAC line associated with the memory
address using the other tweak.
24. The method of claim 19, wherein performing the write
operation comprises:
determining whether a counter index is set to its maximum
value; and
in response to a determination that the counter index is set
to its maximum value, incrementing the global counter
by one; and
setting the counter index to zero.

12

25. The method of claim 19, further comprising:

performing a read operation to the memory address,
wherein performing the read operation comprises
decrypting the one MAC line associated with the
memory address using the tweak to obtain the MAC
value.

26. The method of claim 25, wherein performing the read

operation further comprises:

determining whether an address of the local counter asso-
ciated with the one MAC line is greater than a counter
index;

asserting the counter indication bit in response to a deter-
mination that the address of the local counter associated
with the one MAC line is lesser than the counter index;
and

de-asserting the counter indication bit in response to a
determination that the address of the local counter asso-
ciated with the one MAC line is greater than the counter
index.

27. The method of claim 26, wherein performing the read

0 operation further comprises:

authenticating a data line associated with the memory
address using the MAC value; and

reading contents of the data line in response to a successful
authentication of the data line associated with the
memory address using the MAC value.

#* #* #* #* #*

